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4-4 E-field Calculations 
using Coulomb’s Law 

 
Reading Assignment: pp. 93-98 
 
 
 
 
Specifically: 
 
1.  HO: The Uniform, Infinite Line Charge 
 
2.  HO: The Uniform Disk of Charge 
 
3.  HO:  An Infinite Charge Plane 
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The Uniform, Infinite  
Line Charge 

 
Consider an infinite line of charge lying along the z-axis.  The 
charge density along this line is a constant value of ρ  C/m.  
 

Q:  What electric field  ( )rE  is produced by this 
charge    distribution? 

 
A:  Apply Coulomb’s Law! 

 
We know that for a line charge distribution that: 
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Q:  Yikes! How do we evaluate this integral? 
 
A:   Don’t panic!  You know  how to evaluate this 
integral.  Let’s break up the process into smaller steps. 

 
Step 1:  Determine d ′  
 
The differential element d ′  is just the magnitude of the 
differential line element we studied in chapter 2 (i.e., 
d d′ ′= ).  As a result, we can easily integrate over any of the 

seven contours we discussed in chapter 2. 
 
The contour in this problem is one of those!  It is a line parallel 
to the z-axis, defined as x’ =0 and y’ =0.  As a result, we use for 
d ′ : 

ẑd a dz dz′ ′ ′= =  
 

Step 2:  Determine the limits of integration 
 
This is easy! The line charge is infinite. Therefore, we integrate 
from z ′ = −∞  to z ′ = ∞ . 
 
Step 3: Determine the vector -r r ′ . 
 
Since for all charge x’ = 0 and y’ =0, we find: 
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Step 4:  Determine the scalar - 3r r ′  
 
Since ( )- 22 2r r x y z z′ ′= + + − , we find: 
 

( )- -
3

3 2 22 2r r x y z z⎡ ⎤′ ′= + +⎣ ⎦  

 
Step 5:  Time to integrate ! 
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This result, however, is best expressed in cylindrical 
coordinates: 
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And with cylindrical base vectors: 
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As a result, we can write the electric field produced by an 
infinite line charge with constant density ρ  as: 
 
 

( )
ˆ

02
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r ρρ
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=E  

 
 
Note what this means.  Recall unit vector âρ is the direction that 
points away from the z-axis.  In other words, the electric field 
produced by the uniform line charge points away from the line 
charge, just like the electric field produced by a point charge 
likewise points away from the charge. 
 
It is apparent that the electric field in the static case appears 
to diverge from the location of the charge.  And, this is exactly 
what Maxwell’s equations (Gauss’s Law) says will happen ! i.e.,: 
 

( ) ( )
0

v rr ρ
ε

∇ ⋅ =E  

 
Note the magnitude of the electric field is proportional to 1 ρ , 
therefore the electric field diminishes as we get further from 
the line charge.  Note however, the electric field does not 
diminish as quickly as that generated by a point charge.  Recall 
in that case, the magnitude of the electric field diminishes as 

21 r . 
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The Uniform Disk  
of Charge 

 
Consider a disk radius a, centered at the origin, and lying 
entirely on the z =0 plane. 
 
 
 
 
 
 
 
 
 
 
 
This disk contains surface charge, with density of sρ  C/m2.  
This density is uniform across the disk. 
 
Let’s find the electric field generated by this charge disk! 
 
From Coulomb’s Law, we know: 
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Step 1:  Determine ds’ 
 
This disk can be described by the equation z’ = 0.  That is, every 
point on the disk has a cordinate value z’  that is equal to zero. 
 
This is one of the surfaces we examined in chapter 2.  The 
differential surface element for that surface, you recall, is: 
 

zds ds d dρ ρ φ′ ′ ′ ′= =  
 

Step 2:  Determine the limits of integration . 
 
Note over the surface of the disk, ρ′  changes from 0 to radius 
a, and φ′  changes from 0 to 2π . Therefore: 
 

0 0 2aρ φ π′ ′< < < <  
 

Step 3:   Determine vector r-r′ . 
 
We know that z’ = 0 for all charge, therefore we can write: 
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Since the primed coordinates in ds’ are expressed in cylindrical 
coordinates, we convert the coordinates to get: 
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Step 4: Determine - 3r r ′  
 
We find that: 
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Step 5:  Time to integrate ! 
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Yikes! What a mess!  To simplify our integration let’s determine 
the electric field ( )rE  along the z-axis only.  In other words, 
set x = 0 and y = 0. 
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Note that since: 
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The first two terms (Ex and Ey) are equal to zero.  Integrating 
the last term, we get: 
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From this expression, we can conclude two things.  The first is 
that above the disk (z > 0), the electric field points in the 
direction ˆ za , and below the disk (z < 0), it points in the direction  
-ˆ za . 

 
 
 
 
 
 
 
 

What a surprise (not)! The electric field points away from the 
charge. It appears to be diverging from the charged disk (as 
predicted by Gauss’s Law). 
 
Likewise, it is evident that as we move further and further 
from the disk, the electric field will diminish.  In fact, as 
distance z goes to infinity, the magnitude of the electric field 
approaches zero.  This of course is similar to the point or line 
charge; as we move an infinite distance away, the electric field 
diminishes to nothing. 
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An Infinite Charge Plane 
 
Say that we have a very large charge disk.  So large, in fact, 
that its radius a approaches infinity ! 
 

Q:  What electric field is created by this infinite 
plane? 
 
A:  We already know! Just evaluate the charge disk 
solution for the case where the disk radius a is 
infinity. 
 

In other words: 
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Therefore, the electric field produced by an infinite charge 
plane, with surface charge density sρ , is:
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Think about what this says!   
 

* First, we note that the electric field points away from the 
plane if sρ  is positive, and toward the plane if sρ  is 
negative. 

 
* Second, we notice that the magnitude of the electric field 

is a constant—the magnitude is independent of the 
distance from the infinite plane! 
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The reason for this result is, that no matter how far you are 
(i.e., |z|) from the infinite charge plane, you remain infinitely 
close to plane, when compared to its radius a. 
 
We will find these results are useful when we study the 
behavior of a parallel plate capacitor.   
 


